La difficoltà è che, poiché il viaggio a 40 mph richiede più tempo, si spendono più tempo di andare 40 miglia all'ora di te andare 60 miglia all'ora, quindi la velocità media è ponderata più pesantemente verso 40 mph. Quando si calcola la velocità media per distanze fisse, è meglio pensare a tutto in miglia al minuto invece di miglia all'ora. 60 miglia all'ora è di 1 minuto per ogni miglio, mentre 40 miglia all'ora è di 1,5 minuti per miglio. Dal momento che siamo in viaggio lo stesso numero di miglia ad ogni regime, possiamo ora prendere la media di queste due figure. Quello è 1,25 minuti per miglio in media. Per 240 miglia totale, 240miles1.25minutesmile 300 minuti 5 ore. Questo metodo è chiamato trovando la media armonica delle velocità. risposto nov 2 10 alle 20:26 Per calcolare la velocità media è necessario pesare il tempo delle diverse parti del viaggio, e non con la distanza percorsa nelle stesse parti Quindi la formula di base odi usare è: Se il viaggio è diviso in due parti - S1 coperto a velocità V1 e S2 coperto a velocità V2 - quello che non puoi fare è: (es) in realtà quello che hai fatto con il tuo: frac 2 (40 mph60 mph) il 50 mph, dal momento che nel tuo esempio S1S2. Che, dato l'input, può essere scritta come frac, che è davvero uguale al frac risposto 3 novembre 10 alle 8:25 Qui, le due velocità non sono dello stesso peso (considerando il tempo). Il suo proprio come il problema a volte di fronte a medie semplici (frac), quando x e y non sono equamente ponderato. In questo caso abbiamo HAV andare per l'espressione più generale per average-- che è frac. ha risposto 3 aprile 12 alle 07:56 Ciao, e benvenuto alla fisica Pila Cambio I39ve modificati la risposta per migliorare la grammatica e formattare la matematica. In futuro, provare a scrivere con buona grammatica. Vedere questo per più informazioni utilizzando la sintassi matematica. ndash Manishearth 9830 3 Aprile 12 alle 9:01 anche se può sembrare interessante e rendere tali problemi meno confusione, più penso che è il motivo per cui questa domanda ha così tanto vista. Velocità media e la velocità media. La velocità x media di una particella è definito come particelle dislocamento Delta x va diviso per l'intervallo di tempo delta t durante il quale tale spostamento avvenuto: sopra Sebbene la distanza percorsa per qualsiasi movimento è sempre positivo, la velocità media di una particella che si muove in una dimensione può essere positivo o negativo, a seconda del segno dello spostamento. Nell'uso di tutti i giorni, la velocità e la velocità termini sono intercambiabili. In fisica, tuttavia, vi è una chiara distinzione tra queste due grandezze. Si consideri un maratoneta che corre più di 40 km, ma finisce al suo punto di partenza. La sua velocità media è pari a zero, tuttavia, dobbiamo essere in grado di quantificare quanto velocemente stava correndo. Un rapporto leggermente diversa realizza questo per noi. La velocità media di una particella, una quantità scalare, viene definita come la distanza totale percorsa diviso per il tempo totale necessario per percorrere quella distanza: media ,, velocità ,,, sopra ,,, L'unità SI della velocità media è la stessa come unità di velocità media: metri al secondo. Tuttavia, a differenza di velocità media, velocità media non ha alcun senso e, quindi, non comporta alcun segno algebrico. 1 Quindi, nel caso di questo problema abbiamo una velocità media di, 0,, mph ed una velocità media di oltre oltre oltre ,,, mph pari, 48,, mph. 1 David Halliday, Robert Resnick e Kenneth S. Krane, Movimento in una dimensione, in Fisica, John Wiley Sons amp, Inc, 2001. risposto 15 13 Settembre 2017 alle 10:27 Stack Exchange, INCIS c'è un modo per calcolare la data media, ma solo ignorando l'anno mi spiego. Ho queste date: Se uso MEDIA (F2: F39). il risultato sarà 12152008. Quello non è quello che mi serve. Quello che mi piacerebbe davvero è quello di determinare il giorno medio e Mese. Ci sono un paio dicembre risale lì che ho potuto probabilmente elimino, perché sono lontano, ma con il resto delle date, immagino che la media sarebbe da qualche parte intorno, diciamo 12 luglio (a prescindere dell'anno), per esempio . Spero che questo ha un senso. se sono necessari ulteriori dettagli, per favore fatemelo sapere. Grazie chiesto 6 maggio 15 alla 14:42 I39ve cancellato subito ma era simile a Jan Doggen39s risposta, ho usato DATA (2001, MESE (A1), GIORNO (A1)) quindi creato un elenco di date nel 2001. Si può bisogno o formattare le celle per farli visualizzare come date - tra cui la media (o GEOMEAN) risultato che si calcola. ndash Lefty 6 maggio 15 a 15: 21I hanno essenzialmente una tabella di numeri - una serie temporale di misure. Ogni riga della tabella ha 5 valori per le 5 diverse categorie, e una fila somma per il totale di tutte le categorie. Se prendo la media di ogni colonna e riassumere le medie insieme, dovrebbe essere uguale alla media delle righe somme (ignorando errore di arrotondamento, naturalmente) (Ive ha ottenuto un caso in cui i due valori continuano a venire fuori diverso da circa 30 e Im chiedendo . quanto pazzo sono io) Aggiornamento: vedi sotto - sono stato (leggermente) pazzo e aveva un errore nel mio codice. Sigh trovato il mio problema - è stato un errore stupido vittima nel mio codice. Ero alla ricerca di un errore nella media della logica somme, ma era nella somma della logica medie - fa riferimento la variabile sbagliata. Be ', comunque, weve ha dimostrato circa 5 modi da Domenica che la somma delle medie è in realtà pari alla media delle somme, nel caso in cui questo è importante per chiunque in futuro. rispose 6 Febbraio 12 alle 17:19 Forse questo dovrebbe andare come un aggiornamento alla domanda In entrambi i casi è bene comunque. Anche essere sicuri di accettare una risposta ora che il problema è stato risolto. ndash Zev Chonoles 7 febbraio 12 a 2:15 In genere non è corretto, è solo lo stesso in casi specifici. Sum (x) Sum (y) non è uguale a Sum (xy) n dove n è il numero totale di voci x è voci di riga e di colonna y è voci. unico vero se tutti i ys sono uguali ad esempio: (12 35) 2 1120 (13) (25) 47 Dove, come se y è uguale (17 47) 2 514 (14) (77) 514 PS Mi dispiace per la pubblicazione sul filo morti voglio solo che sia giusto per chiunque altro cercando. In realtà Steve potrebbe essere corretta. Ill fare un esempio semplice e quindi spiegare perché le persone intelligenti possono venire con risposte diverse, perché in un certo senso, theyre sia a destra. Prima fila: 5 6 Seconda fila: 1 2 Terza fila: 3 4 Se si esegue una somma delle medie o medio delle somme come chiesto Daniel, poi youll ottenere 7 come la risposta. Se, tuttavia, si rimuove il 1 lasciando un buco nella tabella, allora la vostra media delle somme scende a 6 23 e la vostra somma delle medie aumenta a 8. Se la tabella dei dati ha spazi vuoti o mancanti punti di dati, quindi i due sono quasi mai la stessa. Se la tabella dei dati viene equallyevenly distribuito senza punti mancanti o fori nella tabella, allora dovrebbero essere sempre la stessa. Chiunque può testare il tutto con la funzione RAND () MS Excel e. Generare una tabella con un numero qualsiasi di rowscolumns e compilare le righe e le colonne con numeri casuali o lasciarlo generare numeri casuali per voi. Quindi utilizzare MEDIA () per la media dei colonne e SUM () per sommare le medie. Poi invertire il processo e utilizzare SUM () per aggiungere le righe e MEDIA () per la media delle somme. Se la tabella è completata, i due numeri saranno esattamente lo stesso. Se, tuttavia, i dati per qualsiasi motivo manca voci, allora può variare da una grande percentuale. Basta avviare l'eliminazione di punti dati al centro del tavolo e guardare i due risultati notevolmente fluttuare. Anche di nota è se lanciate le righe e le colonne, allora si ottengono risultati completamente diversi, in modo da assicurarsi sei coerente. Se si calcola la media le righe nell'esempio di cui sopra e la somma delle medie, o sommare le colonne e medi le somme, quindi si ottiene 10.5 con una tabella completa e 11 e 10, rispettivamente, con il 1 mancante. rispose 6 agosto 12 alla 21:40 Si noti che OP ha scritto in uno dei commenti che non ci sono spazi vuoti nella tabella. Si noti inoltre che se Steve39s risposta viene eliminato allora nessuno saprà cosa significa che il primo periodo. ndash Gerry Myerson 7 agosto 12 alle 01:04 matematica misto è corretta. prendere 3 colonne 10 10s, 5 1s e 2,3,5,6,6,7,9,10 (8 valori da rand), dont gli spazi media. avg di avgs è 5.67 media di tutti i valori è 6.65. matematica misto è ok per rispondere a un vecchio thread. Questa roba, verità o truthy, vive per sempre su internet
No comments:
Post a Comment